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Abstract—To conduct secure communications in wireless 

networks, clients must create safer keys from the recorded less 
secure passwords – known as Password-Authenticated Key 
Exchange (PAKE). As attacker capability has evolved quickly, 
PAKE protocols must progress with time to fight against 
possible attacks. This paper makes an analytical survey on 
current cross-realm client-to-client (C2C) PAKE protocols 
and based on the Smart Card Framework Agreement 
develops a new and stronger C2C PAKE protocol to deal with 
malicious attacks. The new protocol involves client passwords, 
Smart Card information and server private keys to build a 
security protection mechanism which maneuvers by Mod 
calculation, Asymmetric encryption and Diffie-Hellman 
operations and is able to maintain communication security 
even when client passwords and server private keys are 
snatched. To verify the security of various C2C PAKE 
protocols – including ours, we employ Yoneyama's Security 
Model which can verify even Key-Compromise Impersonation 
(KCI) and Leakage of Ephemeral Private (LEP) attacks. Cost 
comparisons – covering calculation times and complexity – are 
also provided. The results show that our protocol achieves 
notably better security at reasonable cost.  

Keywords-client-to-client password-authenticated key 
exchange (C2C PAKE); cross-realm; smart cards; security 
models; performance evaluation. 

I. INTRODUCTION 
 In a wireless network where packet transmission is 

carried out in an open environment, an adversary can easily 
eavesdrop, tamper or intercept routing packets to launch any 
forms of attacks. To secure communications, clients must 
establish more secure keys from the recorded less secure 
passwords by Password-Authenticated Key Exchange 
(PAKE). Figs. 1-3 present three basic PAKE structures – 
2-party, 3-party and C2C. In 2-party PAKE, any two clients 
must use previously recorded passwords to authenticate with 
each other before setting up communication keys. If the 
system has numerous clients, this may produce burdens as 
clients need to record lots of client passwords. To improve it, 
3-party PAKE lets two clients conduct mutual authentication 
via the server (which has all client passwords) to create 
communication keys. C2C PAKE advances one step further. 
It provides cross-realm communication: When two clients of 
different servers are to conduct communication, they will 
authenticate each other’s identity via servers to establish 
communication keys. Compared with 3-party PAKE in 
which close clients also need to perform authentication via 
the remote server, C2C PAKE apparently works better. 

As the scope of malicious attacks has evolved quickly, we 
need more robust security-maintenance mechanisms, i.e., 
we need stronger communication protocols to resist 
malicious attacks even when critical information (such as 
passwords or server private keys) is grabbed. To tackle 
security problems in wireless networks, we first conduct an 
analysis on possible adversary attacks and also on recent 
C2C PAKE protocols to see their advantages/disadvantages. 
Based on the obtained analytical results, we then develop an 
advanced C2C PAKE protocol which employs client 
passwords, Smart Card information and server private keys 
to build a security protection mechanism. The key advantage 
of our new C2C PAKE protocol is, when both client 
passwords and the server private keys are snatched by 
adversaries, communication security can still be sustained. 

  

 
Fig. 1. 2-party PAKE. 

 
Fig. 2. 3-party PAKE. 

 
Fig. 3. C2C PAKE. 
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II. BACKGROUND STUDY 
2.1 Possible Attacks  
*dictionary attacks (DAs): An attacker continues to guess 
the password and verify the correct one through the return 
message. There are  

(1) online DAs: An attacker guesses the password directly 
using key authentication with the server, and successfully 
interpret the return message when guessing right. 

(2) undetectable online DAs: Similar to online DAs 
except that the server can not detect the ongoing attack. 

(3) offline DAs: An attacker collects the client 
authentication packet by eavesdropping and calculates the 
client's password from the collected packet. (Both offline 
DAs and undetectable online DAs can lead to the more 
serious impersonation attacks.) 
*man-in-the-middle attacks: An attacker can join 
communication between two parties by tampering the 
authentication information, without being detected. 
*unknown key-share attacks: An attacker can authenticate 
with the server by modifying a client’s identity and when the 
client thinks he is communicating with a fixed target, he is 
actually communicating with the attacker. 
*known-key attacks: An attacker fetching a communication 
key from a specific communication (e.g., by Denning-Sacco 
attacks) can actually use it to snatch information of other 
communications. A protocol able to resist such attacks is 
said to satisfy forward security. 
*Denning-Sacco attacks: When an (insider) attacker knows 
how to make a communication key, he can use the key and a 
target client's information (such as ID) to produce the 
client’s communication key. 
*replay attacks: An attacker may intercept a client’s 
authentication packet and use it to re-authenticate with the 
server. If passing certification, he can impersonate the client. 
*denial-of-service attacks: An attacker can paralyze a 
server by sending lots of meaningless messages to it. 
*impersonation attacks: An attacker obtains a client's 
password and uses the fake identity to attack other clients or 
the server. Without advanced identity checking mechanisms, 
such an attack is hard to resist.  
*password-compromise impersonation attacks: An 
attacker obtains the password of a client (say A), uses it to 
masquerade as other clients and communicate with A. It may 
happen to clients of general protocols who communicate 
based only on passwords. (Both password-compromise 
impersonation attacks and impersonation attacks are 
key-compromise impersonation (KCI) attacks). 
 
2.2 Existing C2C PAKE Protocols 

  Some C2C PAKE protocols perform/support 
authentication (i.e., verify identity) by smart cards which 
can modify data by physical contact or induction, store 
clients’ authentication information and perform 
encryption/decryption operations. A basic C2C PAKE 
protocol operates as follows. To initiate communication, 
client A first sends a communication request to the server. 

The server will send A a Ticket packet after verifying his 
identity. A then passes the Ticket to his target client at this 
communication attempt (say B). B will, in turn, send his 
authentication information along with the Ticket to the 
server. The server then verifies the identity of B by the 
received information and sends A negotiation information 
for him to negotiate a communication key with B. To 
facilitate later discussions, a brief introduction on major 
C2C PAKE protocols is provided below.   
*Byun’s Protocol [6]: Being the first C2C PAKE protocol, 
it (Fig. 4) has two major problems:  

(i) As a large number of packets contain password 
information, an adversary can grab Epwa(gx), Epwa(gy), 
Epwb(gx’) and Epwb(gy’) from communication (Fig. 4 (A)) 
and use the information to conduct offline DAs.  

(ii) An adversary can also use Ticket B which contains 
gpwa · r (Fig. 4 (B)) and subsequent negotiation information 
to conduct offline DAs. 
*Feng’s Protocol [11]: To solve the problems, this protocol 
lets packets carry less password information and adds 
asymmetric encryption in Tickets and certification (Fig. 5 
(A), involving both private and public keys). This protocol 
uses the password only once for authentication between the 
server and client, and because the packet comes from the 
server to the client (Fig. 5 (B)), an adversary can not guess 
the password by it, largely reducing possible offline DAs. 
Feng’s Protocol has its own problems: 

(i) Asymmetric encryption increases the operation cost. 
(ii) In order to pass a packet that contains the password 

Fig. 4. Byun’s Protocol. 
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from the server to the client, the client must uplink a request 
to the server – taking two extra transmissions. 

(iii) The two extra transmissions, conducted to initiate 
negotiation only, are not certified and are hence prone to 
denial-of-service attacks. 
*Jin’s Protocol [12]: This protocol (Figs. 6-7) does not use 
asymmetric encryption to satisfy KCI security. Instead, it 
employs the Smart Cards. It exchanges Smart Card 
information in the Registration Phase and uses the 
information to set up a communication key in the 
Login-and-Authentication Phase. Its advantages: 

(i) As authentication in the Login-and-Authentication 
Phase is conducted based on Smart Card information which 
is previously established in the Registration Phase (Fig. 6) 
and involves no packets containing the  passwords, offline 
dictionary attacks can be effectively avoided (Fig. 7 (A) 
contains no password PW). 

(ii) Authentication is carried out not based on the 
password, so an adversary holding only the password but no 
Smart Card information can not forge server-client 
authentication. The design can effectively resist KCI attacks. 

(iii) The server authenticates a client by storing only 
parameter x, not the password. Thus, the safety of the 

password can be secured even when the server is attacked 
(Fig. 7 (B): the server uses only x to calculate RA"). 

Jin’s Protocol faces two primary problems: 
(i) Before it is put to work, each client must employ secure 

approaches to set up Smart Card information.  
(ii) An attacker can still launch KCI attacks – using 

argument x, instead of client passwords (Fig. 7 (B): x alone 
can calculate RA"). 
*Ding’s Protocol [10]: This protocol (Fig. 8) involves less 
cost to protect client passwords. The server will broadcast gα 
and gβ for authentication, i.e., server-client authentication 
uses the password only once (Fig. 8 (A)) and the packet 
contains a random number so that an adversary can not guess 
at the password. Offline DAs can be effectively avoided. Its 
disadvantages include (i) the server needs to broadcast gα 
and gβ constantly to inform the clients, and (ii) in the 
authentication phase from clients to the server, the server 
can not authenticate clients and is therefore vulnerable to 
denial-of-service attacks. 
 

III. THE PROPOSED NEW PROTOCOL 
This paper presents a new Smart Card protocol based on 

Jin’s Protocol [12]. The operation of the new C2C PAKE 
protocol is introduced below.  
3.1 Involving Mod Calculation 

 
Fig. 5. Feng’s Protocol. 

 
Fig. 6. Jin’s Protocol (the Registration Phase). 

Fig. 7. Jin's Protocol (the Login-And-Authentication 
Phase). 
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 As Fig. 9 exhibits, our protocol can resist off-line DAs 
because (1) RA’ = RA” = h1(IDA)αx mod p (the value of Mod 
Calculation remains equal after addition, multiplication and 
exponentiation – see the following calculation details), and 
(2) the transmission packets containing RA’ and WA also 
contain random numbers and never use passwords after this 
phase.  

RA’ = (RA - h1(PWA))α mod p = ((h(IDA)x + h(PWA) mod 
p) - h1(PWA))α mod p 

RA” = WA
x mod p = (h1(IDA)α mod p)x mod p 

RA’ = RA” = h1(IDA)αx mod p 
3.2 Employing the Diffie-Hellman Operations 

Our protocol uses a set of Diffie-Hellman operations to 
enhance transmission security (Fig. 9) because  

(1) an adversary with no password can not launch attacks 
(to intercept a transmission packet, it needs the password to 
get the result of the Diffie-Hellman operations), and  

(2) the number of packets containing passwords will not 
grow, reducing the risk of DAs. (In Fig. 9 (E), (A) adds a 
Diffie-Hellman operation and uses G to encrypt packets. For 
easier cross-reference, the original Smart Card 
authentication packet [12] is shown in Fig. 10.) 

By adding the Diffie-Hellman calculation and using 
parameters obtained from such a calculation to encrypt the 
authentication packet, our protocol can keep an adversary 
with no passwords from launching attacks. The involved 
additional cost will be 2 Diffie-Hellman calculations and 4 
times of symmetric encryption. 
3.3 Exchanging Parameters 

Our protocol uses the same way as Ding’s Protocol to 
exchange parameters. In Fig. 9 (D), the parameters that 
Ding's Protocol broadcasts are placed in the initial Smart 
Cards, reducing two times of extra transmissions when 
compared with Feng’s Protocol (Fig. 11).  
3.4 Using Asymmetric Encryption 

Our protocol adds asymmetric encryption in both the 
authentication packet (Fig. 9 (B)) and the Ticket (Fig. 9 (C)) 

to ensure that, without the private key, an adversary can not 
crack the safety. In the Ticket, PubSB makes sure only server 
B can decrypt the packet, while PriSA guarantees the packet 
is sent from server A and an attacker can not decrypt it even 
when the shared key between servers (k) is compromised. 

Fig. 8. Ding's Protocol. 

Fig. 9. Our new Smart Card Protocol. 

Fig. 10. The original Smart Card authentication packet. 

 
Fig. 11. Reducing extra transmissions.
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That is, our protocol can prevent an attacker from launching 
attacks without the private key at the cost of 4 asymmetric 
encryptions (2 pairs of encryption and decryption). On the 
other side, adding asymmetric encryption in the Ticket will 
make it difficult for adversaries to disguise as servers (at the 
cost of another 4 times of asymmetric encryption, i.e., 2 
pairs of encryption and decryption). 
3.5 Major Advantages 

(1) An adversary cannot crack the security of server-client 
authentication without the password, the Smart Card (with 
parameter x) and the private key (Fig. 9 (A) and (B)).  

(2) An adversary needs the private key and the shared key 
between servers (k) to decrypt the Ticket (Fig. 9 (C)). 

IV. PERFORMANCE EVALUATION 
4.1 Employing Appropriate Security Models 

The performance of security protocols is subject to factors 
including length of the cipher text, encryption designs or 
password complexity. As different evaluation mechanisms 
may yield different results, a security protocol tends to 
assume an ideal calculation method and adopt a security 
model to simulate the attacker’s acts – to prove its chance of 
having security cracks nears zero. Employing proper 
security models to attain fair performance comparison 
between different protocols is indeed essential. But, current 
models, which define attacker capability based mainly on 
random oracles and test only known attacks, can not verify 
unknown attacks or specific security loopholes. This paper 
decides to employ Yoneyama's Security Model in [17] to 
evaluate the performance of various protocols – because it 
can verify a number of attacks that the frequently used BR 
(Bellare-Rogaway) [1-4] and CK (Canetti-Krawczyk) [7,13] 
models fail to verify, such as KCI, LEP (Leakage of 
Ephemeral Private), UDonDA (undetectable online DAs), 
and offDA (offline DAs). A brief introduction on attacker 
capability is given below to facilitate later discussions.  
*Execute: An attacker disguises as clients A and B to create 
a communication connection with the server and uses the 
obtained information to initiate a DA. 
*SendClient: An attacker sends a forged packet to a client 
who then sends the calculated results back to the attacker 
following the specified requirements in the forged packet. 
*SendServer: An attacker sends a forged packet to the 
server who then returns the calculated results to the attacker 
following the specified requirements in the forged packet. 

(Execute, SendClient and SendServer together can verify 
BR security, i.e., if an attacker can strike a general attack.) 
*StaticKeyReveal: An attacker can obtain the target static 
key information, such as (1) the password between a client 
and the server – to achieve a KCI attack or (2) the server's 
private key – to achieve an LEP attack. 
*SessionKeyReveal: An attacker can obtain a client’s 
session key after the session is completed. 
*EphemeralKeyReveal: An attacker can obtain the target 
temporary key information, such as information to generate 

session keys. 
*EstablishParty: An attacker can directly register as a client 
on the server, attaining complete control over the client. A 
client not attacked by this oracle is called an honest client. 

(SessionKeyReveal, EphemeralKeyReveal and 
EstablishParty together can verify if a protocol reaches 
forward security.) 
*Test: To test if an attacker can get the client’s session key 
by guessing. The security model will randomly select an 
authentication bit: Test will return a session key if bit = 1 or 
a random number if bit = 0. 
*TestPassword: To test if an attacker can guess and get the 
client’s password.  If the guessed password is right, return 1; 
otherwise, return 0. 
 
4.2 Evaluating the security of our C2C PAKE protocol 

We use Yoneyama's Model to evaluate the security of our 
C2C PAKE protocol. In our assumption, if an attacker 
obtains the private key, he will not obtain K, pw or x at the 
same time; if unable to get the private key, he can get x, pw 
and K. Below are some experiments (Exp). 
Exp0: Let Succ0 be the case that an attacker has guessed the 
correct authentication bit. 
 Advpake

t,D(A) = 2Pr[Succ0] -1     (1) 
Exp1: Authenticate h1, h2, h3 and the ideal encryption and 
decryption ε and D. The probability that the attacker uses 
Send, Reveal and Execute to find the random numbers is 
(qE

2+qh1
2+qh2

2+qh3
2)/2(q−1). 

 Pr[Succ0]−Pr[Succ1]|≤(qE
2+qh1

2+qh2
2+qh3

2)/2(q−1)(2) 
Exp2: Replace WA by a random number. The probability 
that an attacker can distinguish WA from the random number 
equals the probability he can verify WA by obtaining x, 
which will be Advdl

G(Tdl). Then, there are two cases. 
 Case1: The attacker obtains the private key → The 
probability of successfully verifying WA = the probability of 
using the password to get gt and crack DDH = qStaticKey．

Advdl
G(Tdl)．Advddh

G(Tddh). 
 Case2: The attacker obtains the password → The 
probability of successfully verifying WA = the probability of 
cracking DDH and asymmetric encryption = qStaticKey ．

Advdl
G(Tdl)．Advcca2

G(Tcca2). 
By the above two formula, we have 
 |Pr[Succ1]−Pr[Succ2]|�qStaticKey ． Advdl

G(Tdl) ．

(Advddh
G(Tddh) + Advcca2

G(Tcca2))      (3) 
Exp2 is conducted mainly to verify the probability that an 

attacker can crack the authentication packet 
{([gq]pwa,(IDA,IDB,T1,CA,WA)G)PubSA}. In Case1, the 
attacker gets the private key by qStaticKey, breaks symmetric 
encryption by Advdl

G(Tdl), and cracks DDH by Advddh
G(Tddh). 

In Case2, the attacker gets the password by qStaticKey and 
cracks asymmetric encryption by Advcca2

G(Tcca2). 
Exp3: We now use a random number to replace k in the 
Ticket and get 2 cases. 
 Case1: The attacker gets the private key → the 
probability of successfully verifying k = the probability of 
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breaking  the encryption and decryption qStaticKey ．

Advcca
SE(Tse,qe,qd).  

 Case2: The attacker gets K → the probability of 
successfully verifying k = the probability of breaking the 
asymmetric encryption qStaticKey．Advcca2

G(Tcca2). 
As the Ticket is used 3 times, we have  
|Pr[Succ2]− Pr[Succ3] �3qStaticKey．(Advcca

SE(Tse,qe,qd)+ 
Advcca2

G(Tcca2))         (4) 
Exp3 may verify the probability that an attacker can crack 

the Ticket. In Case1, the attacker gets the private key by 
qStaticKey and cracks the symmetric encryption of K by 
Advcca

SE(Tse,qe,qd). In Case2, the attacker gets K by qStaticKey 
and cracks on asymmetric encryption Advcca2

G(Tcca2). 
Exp4: Used to verify the probability that an attacker can 
counterfeit MAC, which will be Advcma

MAC(Tmac,qt,qv). 
MAC is used 2 times (Ea and Eb), so we get  
 |Pr[Succ3]−Pr[Succ4]|�2Advcma

MAC(Tmac,qt,qv)   (5) 
Exp5: Replace DDH by U=gu, V=gv and Z=gr. The 
probability that an attacker can distinguish DDH from U, V 
and Z equals the probability he can crack DDH, i.e., 
Advddh

G(Tddh). Thus                
 |Pr[Succ4]−Pr[Succ5]|�Advddh

G(Tddh)    (6) 
The probability that Exp5 succeeds actually equals the 

probability that the attacker guesses sk by ways not 
mentioned above – including at least the probability of using 

Corrupt(Ci,2) and online DAs qsend/2|D|. Thus, 
 Pr[Succ5] ≤ (qSendClient +qSendServer)/2|D|+1/2   (7) 
By(1)~(7), we have  

Advake
D(t,R)≤(qE

2+qh1
2+ qh2

2+qh3
2)/(q−1)+ qStaticKey．

Advdl
G(Tdl)．(Advddh

G(Tddh)+Advcca2
G(Tcca2))+3qStaticKey．

(Advcca
SE(Tse,qe,qd)+Advcca2

G(Tcca2))+ 
2Advcma

MAC(Tmac,qt,qv)+ Advddh
G(Tddh)+ (qSendClient 

+qSendServer )/2|D|+1/2. 
In ideal conditions, the chance for an attacker to break 

down all encryption mechanisms is nearly none.  Note that 
both the dictionary/password length and the number of 
oracles the attacker uses are as large as infinite. When q and 
D approach infinite while Advdl

G(Tdl), Advddh
G(Tddh), 

Advcca2
G(Tcca2), Advcca

SE(Tse,qe,qd) and Advcma
MAC(Tmac,qt,qv) 

are approximately zero, Advpake
t,D(A) = 2．1/2-1 – a near zero 

value, indicating an attacker has almost no chance to break 
this protocol under ideal conditions. According to this 
security model, an attacker can eavesdrop, send packets and 
obtain sk to launch a general attack or break BR security, or 
obtain a static key (that also contains the server’s private key) 
to reach KCI and LEP attacks. That is, this model can verify 
if a protocol is tough enough to maintain BR+ KCI+LEP 
security, not just the general BR security. 
4.3 The Security of Other Protocols 

AidkeyC2C attains BR but not KCI security as password 
leakage may cause attacks (an attacker can counterfeit X” by 
the password – Fig. 12), and so does Ding’s Protocol (an 
attacker can use the obtained password to decrypt EX and 
ER – Fig. 13). Jin’s Protocol can reach KCI security only if 
its Smart Card is secure; if not (e.g., password leakage), it is 
vulnerable to KCI attacks. For Feng’s Protocol, a safe 

 
Fig. 12. AidkeyC2C Protocol’s weakness. 

 
Fig. 13. Ding’s Protocol’s weakness. 

 
Fig. 14. Feng’s Protocol’s weakness. 

Table I. Calculation times and security comparisons 

Table II. Calculation cost comparison – complexity 

Table III. Cost comparison among protocols – complexity 
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private key will ensure KCI security, but a snatched private 
key will lead to possible LEP attacks (the Ticket in Fig. 14 is 
encrypted by both private and public keys). 
4.4 Security and Cost Comparisons 

Table I gives a handy look on security and cost of various 
protocols, including AidkeyC2C, Ding’s, Jin’s, Feng’s and 
ours. Note that, when considering cost, we take both 
calculation times and complexity into account. The cipher 
text length and cost for symmetric/asymmetric encryption 
are each in linear/exponential relationship. Mod is similar to 
asymmetric encryption – its cipher text length and cost are 
also in exponential relationship. Hash divides the cipher text 
into blocks and cost will increase when blocks increase – in 
linear relationship. MAC resembles asymmetric one-way 
Hash and is hence taken as symmetric calculation.  That is, 
we consider both Hash and MAC symmetric calculation, 
while Mod asymmetric calculation. 

The calculation cost indicates the total amount of 
calculations taken to negotiate and get one session key (the 
results in Table I are average numbers).  In the encryption 
process, each encryption or decryption is counted as one 
calculation. The Smart Card is established only once, so its 
cost is negligible. Table I shows that each protocol reaches 
the mentioned security: The BR model contains forward 
security (FS) and all protocols reach FS and DA security as 
they can resist off-line DAs. 

In Fig. 15, Feng’s Protocol takes more transmissions than 
others because it needs to change DDH’s parameters. Not 
using asymmetric calculation (which costs much more than 
symmetric calculation) enables Ding’s Protocol to reach 
security (but not KCI and LEP security) at lower cost. Here, 
we focus on asymmetric calculation times. From both Table 
I and Fig. 15, we find the increase in cost and security is in 
linear relationship for all protocols but AidkeyC2C. This 
reveals the asymmetric calculations involved in AidkeyC2C 
are unreasonable. The linear relationship for our protocol, 
on the other hand, justifies our involving of additional cost 
to get the valuable security gain. 

Table II lists complexity comparisons (the results are 

calculated and obtained based on [16]) for some 
frequently-used calculations, including asymmetric 
algorithm–RSA, symmetric algorithm–AES (advanced 
encryption standard), Hash–SHA1, MAC–MD5, Mod and 
the Diffie-Hellman algorithm. Cost comparisons are given 
in Table III in which 

n = password length  
d and p = exponent parameter length for exponent 

calculation (set as 16) 
e = a random number greater than 105 (set as 105 here). 
The complexity versus password lengths for various 

operations is depicted in Fig. 16. In Fig. 16, we can see that 
the complexity of asymmetric encryption and decryption 
rises while password length grows. 

Fig. 17 shows that cost difference is apparently larger 
between protocols with or without asymmetric encryption 
than between protocols with asymmetric encryption. For 
protocols with asymmetric encryption, Jin’s takes 4 times of 
Mod, Feng’s and AidkeyC2C take 8 times of asymmetric 
encryption, while ours involves 8 times of asymmetric 
encryption plus 4 times of Mod (Mod is indeed a form of 
asymmetric calculation with less complexity). That explains 
why Feng’s, AidkeyC2C and our protocol (all involve 8 
times of asymmetric encryption) do not generate large cost 
difference. The result further justifies our choice of using 
reasonable extra cost to trade for desirable security gain – 
such as LEP security. 

 
4.5 Practical Applications 
(1) Handheld devices or diskless workstations 

PAKE can be widely used in practical applications, 
especially in handheld devices and diskless workstations. 
This is because C2C PAKE does not ask a client to connect 
to all servers for all the time; instead it will establish a 
connection only when necessary – to prevent possible 
attacks and as a result achieve more desirable 
communication security. When new clients join the network, 
original clients do not need any extra information because 
the protocol will process security authentication. Besides, 
clients can directly communicate with the server and 
therefore handily exchange or update the Smart Card data. 
(2) Kerberos workstations 

Having similar structures as Kerberos, C2C PAKE can be 
used to upgrade the system security of a Kerberos 
workstation, which creates a password only at the beginning 
of a secure communication with an honest server – Smart 
Card data can be exchanged at this time. As the password 
will remain the same for a long period, it is necessary and 
desirable to establish a new authentication mechanism 
independent of the password – by the Smart Card function – 
to tolerate the risk of password leakage. That is, the Smart 
Card function in our new protocol can help servers secure 
better communications. 
(3) Commercial or medical workstations 

As our protocol reaches higher security, it fits better for 
workstations requiring intensive security, such as those 

 

 
Fig. 15. Calculation cost comparison. 
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involving commercial transactions or medical practices. For 
instance, when clients are engaging banking or medical 
activities, they can meanwhile create or update the Smart 
Card to ensure security passage.  
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Fig. 16. Calculation cost comparison – complexity. 

Fig.17. Complexity comparison among various protocols 

V. CONCLUSIONS 
To fight against the ever-growing malicious attacks in 

today’s wireless environments, i.e., to attain more desirable 
communication security for wireless networks, this paper 
presents a new and advanced cross-realm C2C PAKE 
protocol – based on Jin’s Protocol that allows clients to 
exchange Smart Card information and attain authentication 
by Mod Calculation. Aided by Mod Calculation, a set of 
Diffie-Hellman operations, Ding’s parameter exchange 
approach and asymmetric encryption, our new protocol 
employs client passwords, Smart Card information and 
server private keys to form a strong security protection 
mechanism. The key advantage of our protocol is, when 
both client passwords and server private keys are snatched 
by adversaries, communication security can still be 
sustained. Security evaluation (by Yoneyama’s Model) and 
cost comparison (in terms of calculation times and 
complexity) show that, at reasonable cost, our C2C PAKE 
protocol outperforms related protocols in security gain – 
being able to defend BR, KCI and even LEP attacks.  

ACKNOWLEDGMENT 
This work was supported in part by the National Science 

Council, Taiwan, R. O. C., under Grant No. NSC 
100-2221-E-032-063. 

REFERENCES 
[1]. M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Password-based 

authenticated key exchange in the three-party setting,” Proc. Public 
Key Cryptography’05, 2005, LNCS 3386, pp. 65-84. 

[2]. M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key 
exchange secure against dictionary attacks,” Proc. Advances in 
Cryptology - EUROCRYPT 2000, May 2000, LNCS 1807, pp. 
140-156. 

[3]. M. Bellare, and P. Rogaway, “Entity authentication and key 
distribution,” Proc. Advances in Cryptology - CRYPTO '93, 1994, 
LNCS 773, pp. 232-249. 

[4]. M. Bellare, and P. Rogaway, “Provably secure session key 
distribution - the three party case,” Proc. 28th Annual ACM Symp. 
on Theory of Computing, May 1996, pp.57-66. 

[5]. D. Boneh, “The decision Diffie-Hellman problem,” Proc. 3rd 
Algorithmic Number Theory Symposium, 1998, LNCS 1423, pp. 
48-63. 

[6]. J. W. Byun, I. R. Jeong, D. H. Lee, and C.-S. Park, 
“Password-authenticated key exchange between clients with 
different passwords,” Proc. 4th Information and Communications 
Security, Dec. 2002, LNCS 2513, pp.134-146. 

[7]. R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols 
and their use for building secure channels,” Proc. 2001 Advances 
in Cryptology - EUROCRYPT 2001, 2001, pp 451-472. 

[8]. T. Coffee, “Best kept secrets: elliptic curves and modern 
cryptosystems,” MIT 18.704, Fall 2004. 

[9]. J. Daemen and V. Rijmen, The Design of Rijndael: AES-The 
Advanced Encryption Standard, Springer-Verlag, 2002. 

[10]. X. Ding and C. Ma, “Cryptoanalysis and improvements of 
cross-realm C2C-PAKE protocol,” Proc. 2009 WASE Int’l Conf. 
on Information Engineering, 2009, pp. 193-196.   

[11]. D.-G. Feng and J. Xu, “A new client-to-client 
password-authenticated key agreement protocol,” Proc. 2009 Int’l 
Workshop on Coding and Cryptology, 2009, LNCS 5557, pp. 
63–76. 

[12]. W. Jin and J. Xu, “An efficient and provably secure cross-realm 
client-to-client password-authenticated key agreement protocol 
with smart cards,” Proc. 2009 Int’l Conf. on Cryptology and 
Network Security, 2009, LNCS 5888, pp. 299-314. 

[13]. H. Krawczyk, “HMQV: a high-performance secure Diffie-Hellman 
protocol,” Proc. Advances in Cryptology - CRYPTO’05, 2005, 
LNCS 3621, pp. 546-566. 

[14]. R. L. Rivest, “RFC 1321: The md5 message-digest algorithm,” 
Technical Report, Internet Activities Board, April 1992. 

[15].  X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full 
SHA-1,” Proc. Advances in Cryptology - CRYPTO’05, 2005, 
LNCS 3621, pp. 17-36. 

[16]. W. P. Wardlow, “The RSA public key cryptosystem,” Proc. 1991 
Coding Theory and Cryptography, 1991, pp. 101-124.   

[17]. K. Yoneyama, "Efficient and strongly secure password-based 
server aided key exchange," Proc. INDOCRYPT 2008, 2008, 
LNCS 5365, pp. 172–184.

 

708


