
Efficient and Secure Cross-Realm Client-to-Client Password-Authenticated Key Exchange

Po-Jen Chuang and Yi-Ping Liao
Department of Electrical Engineering, Tamkang University

Tamsui, New Taipei City, Taiwan 25137, R.O.C.
E-mail: pjchuang@ee.tku.edu.tw

Abstract—To conduct secure communications in wireless

networks, clients must create safer keys from the recorded less
secure passwords – known as Password-Authenticated Key
Exchange (PAKE). As attacker capability has evolved quickly,
PAKE protocols must progress with time to fight against
possible attacks. This paper makes an analytical survey on
current cross-realm client-to-client (C2C) PAKE protocols
and based on the Smart Card Framework Agreement
develops a new and stronger C2C PAKE protocol to deal with
malicious attacks. The new protocol involves client passwords,
Smart Card information and server private keys to build a
security protection mechanism which maneuvers by Mod
calculation, Asymmetric encryption and Diffie-Hellman
operations and is able to maintain communication security
even when client passwords and server private keys are
snatched. To verify the security of various C2C PAKE
protocols – including ours, we employ Yoneyama's Security
Model which can verify even Key-Compromise Impersonation
(KCI) and Leakage of Ephemeral Private (LEP) attacks. Cost
comparisons – covering calculation times and complexity – are
also provided. The results show that our protocol achieves
notably better security at reasonable cost.

Keywords-client-to-client password-authenticated key
exchange (C2C PAKE); cross-realm; smart cards; security
models; performance evaluation.

I. INTRODUCTION
 In a wireless network where packet transmission is

carried out in an open environment, an adversary can easily
eavesdrop, tamper or intercept routing packets to launch any
forms of attacks. To secure communications, clients must
establish more secure keys from the recorded less secure
passwords by Password-Authenticated Key Exchange
(PAKE). Figs. 1-3 present three basic PAKE structures –
2-party, 3-party and C2C. In 2-party PAKE, any two clients
must use previously recorded passwords to authenticate with
each other before setting up communication keys. If the
system has numerous clients, this may produce burdens as
clients need to record lots of client passwords. To improve it,
3-party PAKE lets two clients conduct mutual authentication
via the server (which has all client passwords) to create
communication keys. C2C PAKE advances one step further.
It provides cross-realm communication: When two clients of
different servers are to conduct communication, they will
authenticate each other’s identity via servers to establish
communication keys. Compared with 3-party PAKE in
which close clients also need to perform authentication via
the remote server, C2C PAKE apparently works better.

As the scope of malicious attacks has evolved quickly, we
need more robust security-maintenance mechanisms, i.e.,
we need stronger communication protocols to resist
malicious attacks even when critical information (such as
passwords or server private keys) is grabbed. To tackle
security problems in wireless networks, we first conduct an
analysis on possible adversary attacks and also on recent
C2C PAKE protocols to see their advantages/disadvantages.
Based on the obtained analytical results, we then develop an
advanced C2C PAKE protocol which employs client
passwords, Smart Card information and server private keys
to build a security protection mechanism. The key advantage
of our new C2C PAKE protocol is, when both client
passwords and the server private keys are snatched by
adversaries, communication security can still be sustained.

Fig. 1. 2-party PAKE.

Fig. 2. 3-party PAKE.

Fig. 3. C2C PAKE.

2012 26th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/12 $26.00 © 2012 IEEE

DOI 10.1109/AINA.2012.128

701

II. BACKGROUND STUDY
2.1 Possible Attacks
*dictionary attacks (DAs): An attacker continues to guess
the password and verify the correct one through the return
message. There are

(1) online DAs: An attacker guesses the password directly
using key authentication with the server, and successfully
interpret the return message when guessing right.

(2) undetectable online DAs: Similar to online DAs
except that the server can not detect the ongoing attack.

(3) offline DAs: An attacker collects the client
authentication packet by eavesdropping and calculates the
client's password from the collected packet. (Both offline
DAs and undetectable online DAs can lead to the more
serious impersonation attacks.)
*man-in-the-middle attacks: An attacker can join
communication between two parties by tampering the
authentication information, without being detected.
*unknown key-share attacks: An attacker can authenticate
with the server by modifying a client’s identity and when the
client thinks he is communicating with a fixed target, he is
actually communicating with the attacker.
*known-key attacks: An attacker fetching a communication
key from a specific communication (e.g., by Denning-Sacco
attacks) can actually use it to snatch information of other
communications. A protocol able to resist such attacks is
said to satisfy forward security.
*Denning-Sacco attacks: When an (insider) attacker knows
how to make a communication key, he can use the key and a
target client's information (such as ID) to produce the
client’s communication key.
*replay attacks: An attacker may intercept a client’s
authentication packet and use it to re-authenticate with the
server. If passing certification, he can impersonate the client.
*denial-of-service attacks: An attacker can paralyze a
server by sending lots of meaningless messages to it.
*impersonation attacks: An attacker obtains a client's
password and uses the fake identity to attack other clients or
the server. Without advanced identity checking mechanisms,
such an attack is hard to resist.
*password-compromise impersonation attacks: An
attacker obtains the password of a client (say A), uses it to
masquerade as other clients and communicate with A. It may
happen to clients of general protocols who communicate
based only on passwords. (Both password-compromise
impersonation attacks and impersonation attacks are
key-compromise impersonation (KCI) attacks).

2.2 Existing C2C PAKE Protocols

 Some C2C PAKE protocols perform/support
authentication (i.e., verify identity) by smart cards which
can modify data by physical contact or induction, store
clients’ authentication information and perform
encryption/decryption operations. A basic C2C PAKE
protocol operates as follows. To initiate communication,
client A first sends a communication request to the server.

The server will send A a Ticket packet after verifying his
identity. A then passes the Ticket to his target client at this
communication attempt (say B). B will, in turn, send his
authentication information along with the Ticket to the
server. The server then verifies the identity of B by the
received information and sends A negotiation information
for him to negotiate a communication key with B. To
facilitate later discussions, a brief introduction on major
C2C PAKE protocols is provided below.
*Byun’s Protocol [6]: Being the first C2C PAKE protocol,
it (Fig. 4) has two major problems:

(i) As a large number of packets contain password
information, an adversary can grab Epwa(gx), Epwa(gy),
Epwb(gx’) and Epwb(gy’) from communication (Fig. 4 (A))
and use the information to conduct offline DAs.

(ii) An adversary can also use Ticket B which contains
gpwa · r (Fig. 4 (B)) and subsequent negotiation information
to conduct offline DAs.
*Feng’s Protocol [11]: To solve the problems, this protocol
lets packets carry less password information and adds
asymmetric encryption in Tickets and certification (Fig. 5
(A), involving both private and public keys). This protocol
uses the password only once for authentication between the
server and client, and because the packet comes from the
server to the client (Fig. 5 (B)), an adversary can not guess
the password by it, largely reducing possible offline DAs.
Feng’s Protocol has its own problems:

(i) Asymmetric encryption increases the operation cost.
(ii) In order to pass a packet that contains the password

Fig. 4. Byun’s Protocol.

702

from the server to the client, the client must uplink a request
to the server – taking two extra transmissions.

(iii) The two extra transmissions, conducted to initiate
negotiation only, are not certified and are hence prone to
denial-of-service attacks.
*Jin’s Protocol [12]: This protocol (Figs. 6-7) does not use
asymmetric encryption to satisfy KCI security. Instead, it
employs the Smart Cards. It exchanges Smart Card
information in the Registration Phase and uses the
information to set up a communication key in the
Login-and-Authentication Phase. Its advantages:

(i) As authentication in the Login-and-Authentication
Phase is conducted based on Smart Card information which
is previously established in the Registration Phase (Fig. 6)
and involves no packets containing the passwords, offline
dictionary attacks can be effectively avoided (Fig. 7 (A)
contains no password PW).

(ii) Authentication is carried out not based on the
password, so an adversary holding only the password but no
Smart Card information can not forge server-client
authentication. The design can effectively resist KCI attacks.

(iii) The server authenticates a client by storing only
parameter x, not the password. Thus, the safety of the

password can be secured even when the server is attacked
(Fig. 7 (B): the server uses only x to calculate RA").

Jin’s Protocol faces two primary problems:
(i) Before it is put to work, each client must employ secure

approaches to set up Smart Card information.
(ii) An attacker can still launch KCI attacks – using

argument x, instead of client passwords (Fig. 7 (B): x alone
can calculate RA").
*Ding’s Protocol [10]: This protocol (Fig. 8) involves less
cost to protect client passwords. The server will broadcast gα
and gβ for authentication, i.e., server-client authentication
uses the password only once (Fig. 8 (A)) and the packet
contains a random number so that an adversary can not guess
at the password. Offline DAs can be effectively avoided. Its
disadvantages include (i) the server needs to broadcast gα
and gβ constantly to inform the clients, and (ii) in the
authentication phase from clients to the server, the server
can not authenticate clients and is therefore vulnerable to
denial-of-service attacks.

III. THE PROPOSED NEW PROTOCOL
This paper presents a new Smart Card protocol based on

Jin’s Protocol [12]. The operation of the new C2C PAKE
protocol is introduced below.
3.1 Involving Mod Calculation

Fig. 5. Feng’s Protocol.

Fig. 6. Jin’s Protocol (the Registration Phase).

Fig. 7. Jin's Protocol (the Login-And-Authentication
Phase).

703

 As Fig. 9 exhibits, our protocol can resist off-line DAs
because (1) RA’ = RA” = h1(IDA)αx mod p (the value of Mod
Calculation remains equal after addition, multiplication and
exponentiation – see the following calculation details), and
(2) the transmission packets containing RA’ and WA also
contain random numbers and never use passwords after this
phase.

RA’ = (RA - h1(PWA))α mod p = ((h(IDA)x + h(PWA) mod
p) - h1(PWA))α mod p

RA” = WA
x mod p = (h1(IDA)α mod p)x mod p

RA’ = RA” = h1(IDA)αx mod p
3.2 Employing the Diffie-Hellman Operations

Our protocol uses a set of Diffie-Hellman operations to
enhance transmission security (Fig. 9) because

(1) an adversary with no password can not launch attacks
(to intercept a transmission packet, it needs the password to
get the result of the Diffie-Hellman operations), and

(2) the number of packets containing passwords will not
grow, reducing the risk of DAs. (In Fig. 9 (E), (A) adds a
Diffie-Hellman operation and uses G to encrypt packets. For
easier cross-reference, the original Smart Card
authentication packet [12] is shown in Fig. 10.)

By adding the Diffie-Hellman calculation and using
parameters obtained from such a calculation to encrypt the
authentication packet, our protocol can keep an adversary
with no passwords from launching attacks. The involved
additional cost will be 2 Diffie-Hellman calculations and 4
times of symmetric encryption.
3.3 Exchanging Parameters

Our protocol uses the same way as Ding’s Protocol to
exchange parameters. In Fig. 9 (D), the parameters that
Ding's Protocol broadcasts are placed in the initial Smart
Cards, reducing two times of extra transmissions when
compared with Feng’s Protocol (Fig. 11).
3.4 Using Asymmetric Encryption

Our protocol adds asymmetric encryption in both the
authentication packet (Fig. 9 (B)) and the Ticket (Fig. 9 (C))

to ensure that, without the private key, an adversary can not
crack the safety. In the Ticket, PubSB makes sure only server
B can decrypt the packet, while PriSA guarantees the packet
is sent from server A and an attacker can not decrypt it even
when the shared key between servers (k) is compromised.

Fig. 8. Ding's Protocol.

Fig. 9. Our new Smart Card Protocol.

Fig. 10. The original Smart Card authentication packet.

Fig. 11. Reducing extra transmissions.

704

That is, our protocol can prevent an attacker from launching
attacks without the private key at the cost of 4 asymmetric
encryptions (2 pairs of encryption and decryption). On the
other side, adding asymmetric encryption in the Ticket will
make it difficult for adversaries to disguise as servers (at the
cost of another 4 times of asymmetric encryption, i.e., 2
pairs of encryption and decryption).
3.5 Major Advantages

(1) An adversary cannot crack the security of server-client
authentication without the password, the Smart Card (with
parameter x) and the private key (Fig. 9 (A) and (B)).

(2) An adversary needs the private key and the shared key
between servers (k) to decrypt the Ticket (Fig. 9 (C)).

IV. PERFORMANCE EVALUATION
4.1 Employing Appropriate Security Models

The performance of security protocols is subject to factors
including length of the cipher text, encryption designs or
password complexity. As different evaluation mechanisms
may yield different results, a security protocol tends to
assume an ideal calculation method and adopt a security
model to simulate the attacker’s acts – to prove its chance of
having security cracks nears zero. Employing proper
security models to attain fair performance comparison
between different protocols is indeed essential. But, current
models, which define attacker capability based mainly on
random oracles and test only known attacks, can not verify
unknown attacks or specific security loopholes. This paper
decides to employ Yoneyama's Security Model in [17] to
evaluate the performance of various protocols – because it
can verify a number of attacks that the frequently used BR
(Bellare-Rogaway) [1-4] and CK (Canetti-Krawczyk) [7,13]
models fail to verify, such as KCI, LEP (Leakage of
Ephemeral Private), UDonDA (undetectable online DAs),
and offDA (offline DAs). A brief introduction on attacker
capability is given below to facilitate later discussions.
*Execute: An attacker disguises as clients A and B to create
a communication connection with the server and uses the
obtained information to initiate a DA.
*SendClient: An attacker sends a forged packet to a client
who then sends the calculated results back to the attacker
following the specified requirements in the forged packet.
*SendServer: An attacker sends a forged packet to the
server who then returns the calculated results to the attacker
following the specified requirements in the forged packet.

(Execute, SendClient and SendServer together can verify
BR security, i.e., if an attacker can strike a general attack.)
*StaticKeyReveal: An attacker can obtain the target static
key information, such as (1) the password between a client
and the server – to achieve a KCI attack or (2) the server's
private key – to achieve an LEP attack.
*SessionKeyReveal: An attacker can obtain a client’s
session key after the session is completed.
*EphemeralKeyReveal: An attacker can obtain the target
temporary key information, such as information to generate

session keys.
*EstablishParty: An attacker can directly register as a client
on the server, attaining complete control over the client. A
client not attacked by this oracle is called an honest client.

(SessionKeyReveal, EphemeralKeyReveal and
EstablishParty together can verify if a protocol reaches
forward security.)
*Test: To test if an attacker can get the client’s session key
by guessing. The security model will randomly select an
authentication bit: Test will return a session key if bit = 1 or
a random number if bit = 0.
*TestPassword: To test if an attacker can guess and get the
client’s password. If the guessed password is right, return 1;
otherwise, return 0.

4.2 Evaluating the security of our C2C PAKE protocol

We use Yoneyama's Model to evaluate the security of our
C2C PAKE protocol. In our assumption, if an attacker
obtains the private key, he will not obtain K, pw or x at the
same time; if unable to get the private key, he can get x, pw
and K. Below are some experiments (Exp).
Exp0: Let Succ0 be the case that an attacker has guessed the
correct authentication bit.
 Advpake

t,D(A) = 2Pr[Succ0] -1 (1)
Exp1: Authenticate h1, h2, h3 and the ideal encryption and
decryption ε and D. The probability that the attacker uses
Send, Reveal and Execute to find the random numbers is
(qE

2+qh1
2+qh2

2+qh3
2)/2(q−1).

 Pr[Succ0]−Pr[Succ1]|≤(qE
2+qh1

2+qh2
2+qh3

2)/2(q−1)(2)
Exp2: Replace WA by a random number. The probability
that an attacker can distinguish WA from the random number
equals the probability he can verify WA by obtaining x,
which will be Advdl

G(Tdl). Then, there are two cases.
 Case1: The attacker obtains the private key → The
probability of successfully verifying WA = the probability of
using the password to get gt and crack DDH = qStaticKey．

Advdl
G(Tdl)．Advddh

G(Tddh).
 Case2: The attacker obtains the password → The
probability of successfully verifying WA = the probability of
cracking DDH and asymmetric encryption = qStaticKey ．

Advdl
G(Tdl)．Advcca2

G(Tcca2).
By the above two formula, we have
 |Pr[Succ1]−Pr[Succ2]|�qStaticKey ． Advdl

G(Tdl) ．

(Advddh
G(Tddh) + Advcca2

G(Tcca2)) (3)
Exp2 is conducted mainly to verify the probability that an

attacker can crack the authentication packet
{([gq]pwa,(IDA,IDB,T1,CA,WA)G)PubSA}. In Case1, the
attacker gets the private key by qStaticKey, breaks symmetric
encryption by Advdl

G(Tdl), and cracks DDH by Advddh
G(Tddh).

In Case2, the attacker gets the password by qStaticKey and
cracks asymmetric encryption by Advcca2

G(Tcca2).
Exp3: We now use a random number to replace k in the
Ticket and get 2 cases.
 Case1: The attacker gets the private key → the
probability of successfully verifying k = the probability of

705

breaking the encryption and decryption qStaticKey ．

Advcca
SE(Tse,qe,qd).

 Case2: The attacker gets K → the probability of
successfully verifying k = the probability of breaking the
asymmetric encryption qStaticKey．Advcca2

G(Tcca2).
As the Ticket is used 3 times, we have
|Pr[Succ2]− Pr[Succ3] �3qStaticKey．(Advcca

SE(Tse,qe,qd)+
Advcca2

G(Tcca2)) (4)
Exp3 may verify the probability that an attacker can crack

the Ticket. In Case1, the attacker gets the private key by
qStaticKey and cracks the symmetric encryption of K by
Advcca

SE(Tse,qe,qd). In Case2, the attacker gets K by qStaticKey
and cracks on asymmetric encryption Advcca2

G(Tcca2).
Exp4: Used to verify the probability that an attacker can
counterfeit MAC, which will be Advcma

MAC(Tmac,qt,qv).
MAC is used 2 times (Ea and Eb), so we get
 |Pr[Succ3]−Pr[Succ4]|�2Advcma

MAC(Tmac,qt,qv) (5)
Exp5: Replace DDH by U=gu, V=gv and Z=gr. The
probability that an attacker can distinguish DDH from U, V
and Z equals the probability he can crack DDH, i.e.,
Advddh

G(Tddh). Thus
 |Pr[Succ4]−Pr[Succ5]|�Advddh

G(Tddh) (6)
The probability that Exp5 succeeds actually equals the

probability that the attacker guesses sk by ways not
mentioned above – including at least the probability of using

Corrupt(Ci,2) and online DAs qsend/2|D|. Thus,
 Pr[Succ5] ≤ (qSendClient +qSendServer)/2|D|+1/2 (7)
By(1)~(7), we have

Advake
D(t,R)≤(qE

2+qh1
2+ qh2

2+qh3
2)/(q−1)+ qStaticKey．

Advdl
G(Tdl)．(Advddh

G(Tddh)+Advcca2
G(Tcca2))+3qStaticKey．

(Advcca
SE(Tse,qe,qd)+Advcca2

G(Tcca2))+
2Advcma

MAC(Tmac,qt,qv)+ Advddh
G(Tddh)+ (qSendClient

+qSendServer)/2|D|+1/2.
In ideal conditions, the chance for an attacker to break

down all encryption mechanisms is nearly none. Note that
both the dictionary/password length and the number of
oracles the attacker uses are as large as infinite. When q and
D approach infinite while Advdl

G(Tdl), Advddh
G(Tddh),

Advcca2
G(Tcca2), Advcca

SE(Tse,qe,qd) and Advcma
MAC(Tmac,qt,qv)

are approximately zero, Advpake
t,D(A) = 2．1/2-1 – a near zero

value, indicating an attacker has almost no chance to break
this protocol under ideal conditions. According to this
security model, an attacker can eavesdrop, send packets and
obtain sk to launch a general attack or break BR security, or
obtain a static key (that also contains the server’s private key)
to reach KCI and LEP attacks. That is, this model can verify
if a protocol is tough enough to maintain BR+ KCI+LEP
security, not just the general BR security.
4.3 The Security of Other Protocols

AidkeyC2C attains BR but not KCI security as password
leakage may cause attacks (an attacker can counterfeit X” by
the password – Fig. 12), and so does Ding’s Protocol (an
attacker can use the obtained password to decrypt EX and
ER – Fig. 13). Jin’s Protocol can reach KCI security only if
its Smart Card is secure; if not (e.g., password leakage), it is
vulnerable to KCI attacks. For Feng’s Protocol, a safe

Fig. 12. AidkeyC2C Protocol’s weakness.

Fig. 13. Ding’s Protocol’s weakness.

Fig. 14. Feng’s Protocol’s weakness.

Table I. Calculation times and security comparisons

Table II. Calculation cost comparison – complexity

Table III. Cost comparison among protocols – complexity

706

private key will ensure KCI security, but a snatched private
key will lead to possible LEP attacks (the Ticket in Fig. 14 is
encrypted by both private and public keys).
4.4 Security and Cost Comparisons

Table I gives a handy look on security and cost of various
protocols, including AidkeyC2C, Ding’s, Jin’s, Feng’s and
ours. Note that, when considering cost, we take both
calculation times and complexity into account. The cipher
text length and cost for symmetric/asymmetric encryption
are each in linear/exponential relationship. Mod is similar to
asymmetric encryption – its cipher text length and cost are
also in exponential relationship. Hash divides the cipher text
into blocks and cost will increase when blocks increase – in
linear relationship. MAC resembles asymmetric one-way
Hash and is hence taken as symmetric calculation. That is,
we consider both Hash and MAC symmetric calculation,
while Mod asymmetric calculation.

The calculation cost indicates the total amount of
calculations taken to negotiate and get one session key (the
results in Table I are average numbers). In the encryption
process, each encryption or decryption is counted as one
calculation. The Smart Card is established only once, so its
cost is negligible. Table I shows that each protocol reaches
the mentioned security: The BR model contains forward
security (FS) and all protocols reach FS and DA security as
they can resist off-line DAs.

In Fig. 15, Feng’s Protocol takes more transmissions than
others because it needs to change DDH’s parameters. Not
using asymmetric calculation (which costs much more than
symmetric calculation) enables Ding’s Protocol to reach
security (but not KCI and LEP security) at lower cost. Here,
we focus on asymmetric calculation times. From both Table
I and Fig. 15, we find the increase in cost and security is in
linear relationship for all protocols but AidkeyC2C. This
reveals the asymmetric calculations involved in AidkeyC2C
are unreasonable. The linear relationship for our protocol,
on the other hand, justifies our involving of additional cost
to get the valuable security gain.

Table II lists complexity comparisons (the results are

calculated and obtained based on [16]) for some
frequently-used calculations, including asymmetric
algorithm–RSA, symmetric algorithm–AES (advanced
encryption standard), Hash–SHA1, MAC–MD5, Mod and
the Diffie-Hellman algorithm. Cost comparisons are given
in Table III in which

n = password length
d and p = exponent parameter length for exponent

calculation (set as 16)
e = a random number greater than 105 (set as 105 here).
The complexity versus password lengths for various

operations is depicted in Fig. 16. In Fig. 16, we can see that
the complexity of asymmetric encryption and decryption
rises while password length grows.

Fig. 17 shows that cost difference is apparently larger
between protocols with or without asymmetric encryption
than between protocols with asymmetric encryption. For
protocols with asymmetric encryption, Jin’s takes 4 times of
Mod, Feng’s and AidkeyC2C take 8 times of asymmetric
encryption, while ours involves 8 times of asymmetric
encryption plus 4 times of Mod (Mod is indeed a form of
asymmetric calculation with less complexity). That explains
why Feng’s, AidkeyC2C and our protocol (all involve 8
times of asymmetric encryption) do not generate large cost
difference. The result further justifies our choice of using
reasonable extra cost to trade for desirable security gain –
such as LEP security.

4.5 Practical Applications
(1) Handheld devices or diskless workstations

PAKE can be widely used in practical applications,
especially in handheld devices and diskless workstations.
This is because C2C PAKE does not ask a client to connect
to all servers for all the time; instead it will establish a
connection only when necessary – to prevent possible
attacks and as a result achieve more desirable
communication security. When new clients join the network,
original clients do not need any extra information because
the protocol will process security authentication. Besides,
clients can directly communicate with the server and
therefore handily exchange or update the Smart Card data.
(2) Kerberos workstations

Having similar structures as Kerberos, C2C PAKE can be
used to upgrade the system security of a Kerberos
workstation, which creates a password only at the beginning
of a secure communication with an honest server – Smart
Card data can be exchanged at this time. As the password
will remain the same for a long period, it is necessary and
desirable to establish a new authentication mechanism
independent of the password – by the Smart Card function –
to tolerate the risk of password leakage. That is, the Smart
Card function in our new protocol can help servers secure
better communications.
(3) Commercial or medical workstations

As our protocol reaches higher security, it fits better for
workstations requiring intensive security, such as those

Fig. 15. Calculation cost comparison.

707

involving commercial transactions or medical practices. For
instance, when clients are engaging banking or medical
activities, they can meanwhile create or update the Smart
Card to ensure security passage.

0

100

200

300

400

500

600

4 8 16 32 64
Password length

(bits)

C
o
m

p
le

xi
ty

Asymmetric
encryption(O((log2e)(log2

n)2))

Asymmetric

decryption(O((log2d)(log2
n)2))

Symmetric encryption、
Hash、MAC(O(log2n))

Mod(O(log3n))

Diffie-Hellman(O(√p))

Fig. 16. Calculation cost comparison – complexity.

Fig.17. Complexity comparison among various protocols

V. CONCLUSIONS
To fight against the ever-growing malicious attacks in

today’s wireless environments, i.e., to attain more desirable
communication security for wireless networks, this paper
presents a new and advanced cross-realm C2C PAKE
protocol – based on Jin’s Protocol that allows clients to
exchange Smart Card information and attain authentication
by Mod Calculation. Aided by Mod Calculation, a set of
Diffie-Hellman operations, Ding’s parameter exchange
approach and asymmetric encryption, our new protocol
employs client passwords, Smart Card information and
server private keys to form a strong security protection
mechanism. The key advantage of our protocol is, when
both client passwords and server private keys are snatched
by adversaries, communication security can still be
sustained. Security evaluation (by Yoneyama’s Model) and
cost comparison (in terms of calculation times and
complexity) show that, at reasonable cost, our C2C PAKE
protocol outperforms related protocols in security gain –
being able to defend BR, KCI and even LEP attacks.

ACKNOWLEDGMENT
This work was supported in part by the National Science

Council, Taiwan, R. O. C., under Grant No. NSC
100-2221-E-032-063.

REFERENCES
[1]. M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Password-based

authenticated key exchange in the three-party setting,” Proc. Public
Key Cryptography’05, 2005, LNCS 3386, pp. 65-84.

[2]. M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” Proc. Advances in
Cryptology - EUROCRYPT 2000, May 2000, LNCS 1807, pp.
140-156.

[3]. M. Bellare, and P. Rogaway, “Entity authentication and key
distribution,” Proc. Advances in Cryptology - CRYPTO '93, 1994,
LNCS 773, pp. 232-249.

[4]. M. Bellare, and P. Rogaway, “Provably secure session key
distribution - the three party case,” Proc. 28th Annual ACM Symp.
on Theory of Computing, May 1996, pp.57-66.

[5]. D. Boneh, “The decision Diffie-Hellman problem,” Proc. 3rd
Algorithmic Number Theory Symposium, 1998, LNCS 1423, pp.
48-63.

[6]. J. W. Byun, I. R. Jeong, D. H. Lee, and C.-S. Park,
“Password-authenticated key exchange between clients with
different passwords,” Proc. 4th Information and Communications
Security, Dec. 2002, LNCS 2513, pp.134-146.

[7]. R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols
and their use for building secure channels,” Proc. 2001 Advances
in Cryptology - EUROCRYPT 2001, 2001, pp 451-472.

[8]. T. Coffee, “Best kept secrets: elliptic curves and modern
cryptosystems,” MIT 18.704, Fall 2004.

[9]. J. Daemen and V. Rijmen, The Design of Rijndael: AES-The
Advanced Encryption Standard, Springer-Verlag, 2002.

[10]. X. Ding and C. Ma, “Cryptoanalysis and improvements of
cross-realm C2C-PAKE protocol,” Proc. 2009 WASE Int’l Conf.
on Information Engineering, 2009, pp. 193-196.

[11]. D.-G. Feng and J. Xu, “A new client-to-client
password-authenticated key agreement protocol,” Proc. 2009 Int’l
Workshop on Coding and Cryptology, 2009, LNCS 5557, pp.
63–76.

[12]. W. Jin and J. Xu, “An efficient and provably secure cross-realm
client-to-client password-authenticated key agreement protocol
with smart cards,” Proc. 2009 Int’l Conf. on Cryptology and
Network Security, 2009, LNCS 5888, pp. 299-314.

[13]. H. Krawczyk, “HMQV: a high-performance secure Diffie-Hellman
protocol,” Proc. Advances in Cryptology - CRYPTO’05, 2005,
LNCS 3621, pp. 546-566.

[14]. R. L. Rivest, “RFC 1321: The md5 message-digest algorithm,”
Technical Report, Internet Activities Board, April 1992.

[15]. X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full
SHA-1,” Proc. Advances in Cryptology - CRYPTO’05, 2005,
LNCS 3621, pp. 17-36.

[16]. W. P. Wardlow, “The RSA public key cryptosystem,” Proc. 1991
Coding Theory and Cryptography, 1991, pp. 101-124.

[17]. K. Yoneyama, "Efficient and strongly secure password-based
server aided key exchange," Proc. INDOCRYPT 2008, 2008,
LNCS 5365, pp. 172–184.

708

